

Heuristic Onboard Pointing Re-scheduling
for an Earth Observing Spacecraft

Steve Chien, Martina Troesch,

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
steve.chien@jpl.nasa.gov

Abstract
Prior space missions have not routinely used onboard
decision-making. The Autonomous Sciencecraft (ASE),
flying onboard the Earth Observing One spacecraft, has
been flying autonomous agent software for the last decade
that enables it to analyze acquired imagery on board and use
that analysis to determine future imaging. However ASE
takes approximately one hour to analyze and respond.
This paper describes a scheduling prototype for the Earth
Observing Autonomy (EOA) project to increase the
responsiveness of spacecraft flight software for onboard
decision-making as well as to increase the capabilities of
flight software. Specifically, we target onboard image
analysis and response within a single orbital overflight at
low Earth orbit (about eight minutes). We focus on the re-
scheduling of the future image acquisitions in the context of
an existing set of requests along with new requests based on
onboard analysis of just acquired imagery. We describe a
greedy, constructive, scheduler with O(n2) performance and
present preliminary results on its performance.

 Introduction
The Earth Observing Autonomy (EOA) project targets the
development of a spacecraft autonomy capability to enable
a wide range of Earth Observing, pointing spacecraft (e.g.,
Earth Observing One [Ungar et al. 2003], The Spot
constellation [Wikipedia Spot 2015], Orbview Class
spacecraft (such as Worldview-3) [Ball, 2015, Wikipedia
Worldview-3 2015] to image, analyze the image, and re-
image based on that analysis within a single overflight,
imposing a responsiveness constraint of 5-8 minutes. This
would represent a dramatic improvement over the current
state of the art, ASE [Chien et al. 2005], which responds
within roughly 1 hour.
 We describe a software prototype of the EOA capability
that includes several autonomy components:
1. Onboard science processing algorithms. Science

analysis algorithms process onboard image data to

Copyright © 2015, California Institute of Technology. All rights reserved.

detect science events and suggest reactions to
maximize science return. Specifically we investigate
the use of the Mixture –tuned Match Filter (MTMF)
[Boardman and Kruse 2011] for onboard spectral
analysis of acquired imagery. However ASE has
already demonstrated the utility of thermal analysis for
volcanoes and wildfires [Davies et al. 2006], spectral
analysis for flooding [Ip et al. 2006], spectral analysis
for cryosphere study [Doggett et al. 2006], as well as
spectral unmixing for mineralogical analysis
[Thompson et al. 2012].

2. Onboard planning and scheduling software. The
Continuous Activity Scheduling Planning Execution
and Replanning (CASPER) [Chien et al. 2000]
combined with the Eagle Eye Mission Planning
Software [Knight et al. 2013] system generates a
baseline mission operations plans from observation
requests. This baseline plan is subject to considerable
modification onboard in response to data analysis from
step 1. The model-based planning algorithms enable
rapid response to a wide range of operations scenarios
based on models of spacecraft constraints. However,
in this paper we focus on a greedy, constructive, non-
backtracking scheduler designed specifically for this
application.

3. Robust execution software. The JPL core flight
software [Weiss 2013] (CFS) expands the CASPER
mission plans to low-level spacecraft commands and
includes a powerful and expressive sequencing engine.
The CFS sequencing engine monitors the execution of
the plan and has the flexibility and knowledge to
perform improvements in execution as well as
procedural responses to execution anomalies.

One challenge to spacecraft autonomy is limited computing
resources. An average spacecraft CPU offers 200 MIPS
and 128 MB RAM – far less than a typical laptop
computer. For the EOA prototype, we baseline a Rad 750
or Leon processor for all of the autonomy capability.

9

 EOA demonstrates an integrated autonomous mission
response capability using onboard science analysis,
replanning, and robust execution. EOA performs intelligent
science data analysis, and spacecraft retargeting. This
capability can reduce data downlinked in cases where
onboard analysis determines the data not of interest (e.g.
search for active volcanos and return only images that
contain active volcanos). This capability can also enable
an increase in science return. In many cases, a mission is
not limited by observation time, but rather by downlink
volume. In these cases, if the spacecraft can acquire
imagery searching for a specific signature and not return
the data if the signatures not found, then search can be
made much more efficient. Specifically, the spacecraft can
search for active volcanoes a large amount of the time, and
only pay the downlink cost proportional to the number of
images with active volcanoes rather than the total number
of images acquired searching for active volcanoes. In
cases where phenomena may be short-lived, onboard
detection may enable additional data to be acquired,
gathering more science data on the scarce phenomena (e.g.
when detecting an active volcano, add requests to image it
more frequently and in greater detail).
 The execution flow of the EOA software is shown in
Figure 1. As the spacecraft overflys targets, it images
them. As the imagery is acquired, it is processed onboard
the spacecraft. Based on the operations policies of the
missions, this analysis may result in new image requests.
These image requests are folded into the prior image
requests and a new schedule is constructed that may
acquire the new image and may change other images
acquired (such as pre-empting a less valuable target).
Spacecraft execution then continues.

These capabilities enable radically different missions with
significant onboard decision-making allowing new ways to
conduct science from space. The paradigm shift toward
highly autonomous spacecraft will enable future space

missions to achieve significantly greater science returns
with reduced risk and reduced operations cost.
In this paper, as the meeting topic is planning and
scheduling, we focus on the rescheduling portion of the
overall responsiveness of the mission. We begin by
describing the overall on board response scenario to show
the overall mission timeline and the context of
rescheduling.

Autonomous Science Scenario
Our onboard planning capability is designed to support an
EOA mission scenario. While the EOA software is
designed to support a wide range of spacecraft without any
modification, in this section, we describe a scenario with a
Worldview-3 like spacecraft [Ball 2015, Wikipedia 2015]
to image science targets, process and analyze onboard
image data, and re-plan operations based on science
results.
 For this demonstration we assume several baseline
mission parameters.

Parameter Value
Orbit 950 km Sun synchonous
Initial Science Images 30-40° lookahead from nadir
Response image Nadir to 20° lookahead
Spacecraft slew rate 4.5° per second, instantaneous

start and stop, no settle time
Imaging time Dwell of 1s per image
Image request granule
"footprint"

0.5 km along track x 4 km
across track

In Figure 1 we highlight some of the geometry
characteristics of the EOA scenario. As the spacecraft
orbits the earth, it has several viewing windows. The first
viewing window is the initial science image window which
covers from 31 to 38° in front of the spacecraft. The
second viewing window is the response image which
covers from 0° lookahead (nadir) to 28° lookahead. As the
spacecraft flies over the earth it is imaging in large number
of locations in the initial science window. As it acquires
this imagery, software analyzes the imagery onboard the
spacecraft. This analysis indicates the possible need to
take follow-up imagery (in the response imaging window).
For example, in the initial science window we might search
for the thermal signature of a volcanic eruption or wildfire.
In the response window we might further image to
precisely determine the extent of the lava flow and the
exact temperature map of the flow.
The goal of the scheduler is to accommodate as many of
the initial science and response imaging requests but is
guided by the priority of the requests and restricted by the
pointing and slewing capabilities of the spacecraft (as well

10

as any other operations constraints). As shown in Figure 2,
from a side view, the speacecraft must slew forwards and
backwards looking a variable amount ahead to view the
image targets. At the same time, the spacecraft is moving
forwards due to orbital motion (at approximately 7.5km
per second). Because processing the images requires some
time, the initial search window is significantly ahead of the
response window. This enables initial search-ed images to
be processed/analyzed in time to allow for scheduling of
followup imagery in the response window. The response
window does not extend behind the spacecraft in order to
maintain consistent lighting conditions.
 This slewing forwards and backwards along the
spacecraft motion track is complicated by two things.
First, the angle at which the spacecraft must look forward
to view the target is a non linear function of when the
spacecraft wishes to view the target. Specifically, at nadir,
for the Earth, in a 950km orbit, 1 degree of lookahead
corresponds to 16.6 km ahead of nadir in the ground track.
However, at 37° of lookahead, 1° of further lookahead
(e.g. to 38° lookahead) corresponds to 30.7 km ahead in
the ground track. The second issue is that typically the
slew rate of the spacecraft is not linear, there is a ramp up
acceleration of the spacecraft to some maximum slew rate,
a portion of the slew at the maximum rate, then a ramp
down as the spacecraft arrives at the desired position.
 Figure 2, Case 1 shows these two factors from the
spacecraft pointing perspective. In this example the
spacecraft is looking ahead and wants to view a target
further ahead beyond the current look angle. The spaceraft
could simply wait until the target comes into view, or it
can slew ahead to meet the target. The blue line shows the
track of a fixed point on the ground in terms of the look
angle from the spacecraft as the spacecraft approaches the
point. This line indicates that at time 0 the target is at 42°
lookahead. The red line shows the angular position of the
spacecraft reachable from the starting point of nadir as a
function of time. The intersection of these two lines shows
the earliest possible time that the spacecraft can view the
target. The graph indicates that if the spacecraft begins
slewing it will be able to reach the target but that the target
will be at 38° lookahead when it is reached. In this case

the motion of the spacecraft is helping us to meet the target
earlier.
 The right side of Figure 2 shows a different case, Case 2.
In Case 2, the spacecraft is pointing at 38° lookahead, and

wants to next view a target currently at 20° lookahead. In
this case the spacecraft motion is carrying the target
(relative to the spacecraft) away from the current
spacecraft pointing and the slew must catch up. The graph
shows that the by the time that the spacecraft can view the
target it will be at 17° lookahead.
 Figure 4 is a view from above the spacecraft looking
down on the Earth. As the spacecraft moves along track
(from left to right in Figure 4), the spacecraft must also
slew across track (up and down in the Figure) as well as
forwards and backwards along the ground track (left and
right in the Figure) to image targets.

This scheduling problem is a challenging one for several
reasons.

11

1. The spacecraft has limited ability to slew from
one target to the next (e.g. each slew takes up
valuable time).

2. Targets are distributed across the ground track of
the spacecraft so that the amount of time required
to image a target depends on the preceding and
following (temporally) targets in the schedule.

3. Because the initial viewing and response doing
windows are separated angularly, slewing back
and forth between these windows can be wasteful
of time.

4. Image analysis takes time. During this time
spacecraft is moving towards the target(s). This is
the reason why the initial image analysis and
response image analysis windows are not
overlapping, to allow the onboard software time
to analyze the images.

5. Generating the schedule also takes time (the focus
of this paper).

6. When calculating a start time to schedule an
observation of a target, the spacecraft intercepts
the target. The spacecraft must slew to a given
position (of the target), reaching that position at
the exact time that the target is in that position
relative to the spacecraft. This requires an
accurate model of the spacecraft slew time as well
as the ability to project where relative to the
spacecraft any target will be at any point in time.

7. In addition to pointing, the scheduler must
consider other resources such as power, thermal,
data volume (e.g. [Chien et al. 2010, Chien et al.
2012]). However in this paper we focus on the
pointing and slewing aspect of the problem as the
state and resource management aspect of the
problem has been considered elsewhere.

In order to simplify the scheduling problem we first
transform the image request locations from a <latitude,
longitude, altitude> coordinate frame of reference to an
<along track, across track> frame of reference (in this
process using a model of the spacecraft orbit). From this
<along the track, across track frame of reference>,
combined with the spacecraft orbit, the set of valid times to
view any target in the initial viewing window or response
window is easily computed.

R = {r1,…rn} sorted from highest priority to lowest priority

achieved_requests = {}
best_solution = nil
for adding_request ∈{r1…ra}
 call schedule(achieved_requests ∪ {adding_request});
 if success then
 achieved_requests ← achieved_requests ∪ {adding_request}

 best_solution ← solution returned by schedule

Schedule(request_set = {r1…ra})
Sort request set by earliest start time
 (e.g. request with earliest start time is first in set)
current_solution = {}
for current_request ∈{r1…ra}
 attempt to add current_request to current_solution
 by scheduling it at the earliest possible time that
 it will fit into the schedule
 if cannot add return FAIL
 else (success} continue
return current_solution

This scheduling algorithm represents a greedy outer loop
where we try to add requests in priority order. The inner
loop is given a set of requests, and attempts to schedule
them sweeping forward in time considering earliest
possible start time requests first.
 Figure 5 shows the inner loop of the scheduler. In figure
5a the two headed arrows indicate the earliest and latest
possible times each image can be acquired. The longer
intervals are response images and the shorter intervals are
initial search requests. In Figure 5a the requests are sorted
by earliest possible start time. Figure 5b shows the
requests being scheduled. The software tries to add each
request in the earliest start time sorted order, adding the
request to the schedule as early as possible. The orange
blocks indicate the slew time and the blue blocks indicate
the imaging time. The imaging time is roughly constant
but the slewing time is higher if the preceding image was
of a different type (initial, response), this is because the
spacecraft is generally slewing a greater distance (up to 0°
! 38° lookahead) as opposed to from one initial search to
another (maximum slew from 31° ! 38°) or from one
response to another (from 0° ! 28°).

12

	paper_7.pdf
	BepiColombo Science Data Storage and Downlink Optimization Tool
	2 nicola.policella@esa.int, Senior Research Engineer, Advanced Mission Concepts Office, ESOC, Germany
	3 simone.fratini@esa.int, Senior Research Engineer, Advanced Mission Concepts Office, ESOC, Germany
	4 jonathan.mcauliffe@esa.int, Operations Scientist, BepiColombo Science Ground Segment, ESAC, Spain
	Abstract
	Introduction
	MPO SSMM Storage and Downlink
	Radio Frequency bands
	Latency
	PID to Packet Store allocation
	SSMM packet stores priorities
	Science Data Downlink Mechanisms
	On-Board Data Storage and Downlink Modelling
	Problem Rationale
	SSMM AI Tool Description
	Model-Based Representation with Timelines
	Solving Approach
	Flow Network Model
	Solving Methods
	Finding a downlink plan
	Iterative Leveling: Improving Latency
	Conclusions
	References

	paper_13a.pdf
	Daniel Tran* and Mark D. Johnston*
	Abstract

	1. Introduction
	2. DSN Scheduling: Process and Software
	3. Scheduling in the Follow-the-Sun Era
	4. The Role of Link Complexity
	5. Prototype and Experiments
	Link Assignment Algorithm
	User Interface

	6. Results and Conclusions
	Bibliography

	preface.pdf
	Preface
	Table of Contents
	Program Committee

	preface.pdf
	Preface
	Table of Contents
	Program Committee

	Preface3.pdf
	Preface
	Table of Contents
	Program Committee

	toc.pdf
	Preface
	Table of Contents
	Program Committee

	toc.pdf
	Preface
	Table of Contents
	Program Committee

